Компьютерология - Информационный ресурс

Методы вычисления определителей. Определители квадратных матриц Определитель матрицы а


Квадратной матрице А порядка n можно сопоставить число det А (или |A |, или ), называемое ее определителем , следующим образом:

Определитель матрицы A также называют ее детерминантом . Правило вычисления детерминанта для матрицы порядка N является довольно сложным для восприятия и применения. Однако известны методы, позволяющие реализовать вычисление определителей высоких порядков на основе определителей низших порядков. Один из методов основан на свойстве разложения определителя по элементам некоторого ряда (свойство 7). При этом заметим, что определители невысоких порядков (1, 2, 3) желательно уметь вычислять согласно определению.

Вычисление определителя 2-го порядка иллюстрируется схемой:


Пример 4.1. Найти определители матриц

При вычислении определителя 3-го порядка удобно пользоваться правилом треугольников (или Саррюса), которое символически можно записать так:

Пример 4.2. Вычислить определитель матрицы

det А = 5*1*(-3) + (-2)*(-4)*6 + 3*0*1 — 6*1*1 — 3*(-2)*(-3) — 0*(-4)*5 = -15+48-6-18 = 48-39 = 9.

Сформулируем основные свойства определителей, присущие определителям всех порядков. Некоторые из этих свойств поясним на определителях 3-го порядка.

Свойство 1 («Равноправность строк и столбцов»). Определитель не изменится, если его строки заменить столбцами, и наоборот. Иными словами,

В дальнейшем строки и столбцы будем просто называть рядами определителя .

Свойство 2 . При перестановке двух параллельных рядов определитель меняет знак.

Свойство 3 . Определитель, имеющий два одинаковых ряда, равен нулю.

Свойство 4 . Общий множитель элементов какого-либо ряда определителя можно вынести за знак определителя.

Из свойств 3 и 4 следует, что если все элементы некоторого ряда пропорциональны соответствующим элементам параллельного ряда, то такой определитель равен нулю.

Действительно,

Свойство 5 . Если элементы какого-либо ряда определителя представляют собой суммы двух слагаемых, то определитель может быть разложен на сумму двух соответствующих определителей.

Например,

Свойство 6. («Элементарные преобразования определителя»). Определитель не изменится, если к элементам одною ряда прибавить соответствующие элементы параллельного ряда, умноженные па любое число.

Пример 4.3 . Доказать, что

Решение: Действительно, используя свойства 5, 4 и 3 подучим

Дальнейшие свойства определителей связаны с понятиями минора и алгебраического дополнения.

Минором некоторого элемента аij определителя n- го порядка называется определитель n — 1-го порядка, полученный из исходного путем вычеркивания строки и столбца, па пересечении которых находится выбранный элемент. Обозначается mij

Алгебраическим дополнением элемента aij определителя называется его минор, взятый со знаком «плюс», если сумма i + j четное число, и со знаком «минус», если эта сумма нечетная. Обозначается Aij :

Свойство 7 («Разложение определителя по элементам некоторого ряда»). Определитель равен сумме произведений элементов некоторого ряда на соответствующие им алгебраические дополнения.


Понятие определителя является одним из основных в курсе линейной алгебры. Это понятие присуще ТОЛЬКО КВАДРАТНЫМ МАТРИЦАМ, этому понятию и посвящена данная статья. Здесь мы будем говорить об определителях матриц, элементами которых являются действительные (или комплексные) числа. В этом случае определитель есть действительное (или комплексное) число. Все дальнейшее изложение будет ответом на вопросы как вычислять определитель, и какими свойствами он обладает.

Сначала дадим определение определителя квадратной матрицы порядка n на n как сумму произведений перестановок элементов матрицы. На основании этого определения запишем формулы для вычисления определителей матриц первого, второго, третьего порядков и подробно разберем решения нескольких примеров.

Далее перейдем к свойствам определителя, которые будем формулировать в виде теорем без доказательства. Здесь будет получен метод вычисления определителя через его разложение по элементам какой-либо строки или столбца. Этот метод позволяет свести вычисление определителя матрицы порядка n на n к вычислению определителей матриц порядка 3 на 3 или меньшего. Обязательно покажем решения нескольких примеров.

В заключении остановимся на вычислении определителя методом Гаусса. Этот метод хорош при нахождении значений определителей матриц порядка выше 3 на 3 , так как требует меньших вычислительных усилий. Также разберем решение примеров.

Навигация по странице.

Определение определителя матрицы, вычисление определителя матрицы по определению.

Напомним несколько вспомогательных понятий.

Определение.

Перестановкой порядка n называется упорядоченный набор чисел, состоящий из n элементов.

Для множества, содержащего n элементов, существует n! (n факториал) перестановок порядка n . Перестановки отличаются друг от друга лишь порядком следования элементов.

Например, рассмотрим множество, состоящее из трех чисел: . Запишем все перестановки (всего их шесть, так как ):

Определение.

Инверсией в перестановке порядка n называется всякая пара индексов p и q , для которой p-ый элемент перестановки больше q-ого .

В предыдущем примере инверсией перестановки 4 , 9 , 7 является пара p=2 , q=3 , так как второй элемент перестановки равен 9 и он больше третьего, равного 7 . Инверсией перестановки 9 , 7 , 4 будут три пары: p=1 , q=2 (9>7 ); p=1 , q=3 (9>4 ) и p=2 , q=3 (7>4 ).

Нас будет больше интересовать количество инверсий в перестановке, а не сама инверсия.

Пусть - квадратная матрица порядка n на n над полем действительных (или комплексных) чисел. Пусть – множество всех перестановок порядка n множества . Множество содержит n! перестановок. Обозначим k–ую перестановку множества как , а количество инверсий в k-ой перестановке как .

Определение.

Определитель матрицы А есть число, равное .

Опишем эту формулу словами. Определителем квадратной матрицы порядка n на n является сумма, содержащая n! слагаемых. Каждое слагаемое представляет собой произведение n элементов матрицы, причем в каждом произведении содержится элемент из каждой строки и из каждого столбца матрицы А . Перед k-ым слагаемым появляется коэффициент (-1) , если элементы матрицы А в произведении упорядочены по номеру строки, а количество инверсий в k-ой перестановке множества номеров столбцов нечетно.

Определитель матрицы А обычно обозначается как , также встречается обозначение det(A) . Также можно услышать, что определитель называют детерминантом.

Итак, .

Отсюда видно, что определителем матрицы первого порядка является элемент этой матрицы .

Вычисление определителя квадратной матрицы второго порядка - формула и пример.

порядка 2 на 2 в общем виде.

В этом случае n=2 , следовательно, n!=2!=2 .

.

Имеем

Таким образом, мы получили формулу для вычисления определителя матрицы порядка 2 на 2 , она имеет вид .

Пример.

порядка .

Решение.

В нашем примере . Применяем полученную формулу :

Вычисление определителя квадратной матрицы третьего порядка - формула и пример.

Найдем определитель квадратной матрицы порядка 3 на 3 в общем виде.

В этом случае n=3 , следовательно, n!=3!=6 .

Оформим в виде таблицы необходимые данные для применения формулы .

Имеем

Таким образом, мы получили формулу для вычисления определителя матрицы порядка 3 на 3 , она имеет вид

Аналогично можно получить формулы для вычисления определителей матриц порядка 4 на 4 , 5 на 5 и более высоких. Они будут иметь очень громоздкий вид.

Пример.

Вычислите определитель квадратной матрицы порядка 3 на 3 .

Решение.

В нашем примере

Применяем полученную формулу для вычисления определителя матрицы третьего порядка:

Формулы для вычисления определителей квадратных матриц второго и третьего порядков очень часто применяются, так что рекомендуем их запомнить.

Свойства определителя матрицы, вычисление определителя матрицы с использованием свойств.

На основании озвученного определения справедливы следующие свойства определителя матрицы .

    Определитель матрицы А равен определителю транспонированной матрицы А Т , то есть, .

    Пример.

    Убедитесь, что определитель матрицы равен определителю транспонированной матрицы.

    Решение.

    Воспользуемся формулой для вычисления определителя матрицы порядка 3 на 3 :

    Транспонируем матрицу А :

    Вычислим определитель транспонированной матрицы:

    Действительно, определитель транспонированной матрицы равен определителю исходной матрицы.

    Если в квадратной матрице все элементы хотя бы одной из строк (одного из столбцов) нулевые, определитель такой матрицы равен нулю.

    Пример.

    Проверьте, что определитель матрицы порядка 3 на 3 равен нулю.

    Решение.


    Действительно, определитель матрицы с нулевым столбцом равен нулю.

    Если переставить местами две любые строки (столбца) в квадратной матрице, то определитель полученной матрицы будет противоположен исходному (то есть, изменится знак).

    Пример.

    Даны две квадратные матрицы порядка 3 на 3 и . Покажите, что их определители противоположны.

    Решение.

    Матрица В получена из матрицы А заменой третьей строки на первую, а первой на третью. Согласно рассмотренному свойству определители таких матриц должны отличаться знаком. Проверим это, вычислив определители по известной формуле.

    Действительно, .

    Если в квадратной матрице хотя бы две строки (два столбца) одинаковы, то ее определитель равен нулю.

    Пример.

    Покажите, что определитель матрицы равен нулю.

    Решение.

    В данной матрице второй и третий столбцы одинаковы, так что согласно рассмотренному свойству ее определитель должен быть равен нулю. Проверим это.

    На самом деле определитель матрицы с двумя одинаковыми столбцами есть ноль.

    Если в квадратной матрице все элементы какой-либо строки (столбца) умножить на некоторое число k , то определитель полученной матицы будет равен определителю исходной матрицы, умноженному на k . Например,

    Пример.

    Докажите, что определитель матрицы равен утроенному определителю матрицы .

    Решение.

    Элементы первого столбца матрицы В получены из соответствующих элементов первого столбца матрицы А умножением на 3 . Тогда в силу рассмотренного свойства должно выполняться равенство . Проверим это, вычислив определители матриц А и В .

    Следовательно, , что и требовалось доказать.

    ОБРАТИТЕ ВНИМАНИЕ.

    Не путайте и не смешивайте понятия матрицы и определителя! Рассмотренное свойство определителя матрицы и операция умножения матрицы на число это далеко не одно и то же.
    , но .

    Если все элементы какой-либо строки (столбца) квадратной матрицы представляют собой сумму s слагаемых (s – натуральное число, большее единицы), то определитель такой матрицы будет равен сумме s определителей матриц, полученных из исходной, если в качестве элементов строки (столбца) оставить по одному слагаемому. Например,

    Пример.

    Докажите, что определитель матрицы равен сумме определителей матриц .

    Решение.

    В нашем примере , поэтому в силу рассмотренного свойства определителя матрицы должно выполняться равенство . Проверим его, вычислив соответствующие определители матриц порядка 2 на 2 по формуле .

    Из полученных результатов видно, что . На этом доказательство завершено.

    Если к элементам некоторой строки (столбца) матрицы прибавить соответствующие элементы другой строки (столбца), умноженные на произвольное число k , то определитель полученной матрицы будет равен определителю исходной матрицы.

    Пример.

    Убедитесь, что если к элементам третьего столбца матрицы прибавить соответствующие элементы второго столбца этой матрицы, умноженные на (-2) , и прибавить соответствующие элементы первого столбца матрицы, умноженные на произвольное действительное число , то определитель полученной матрицы будет равен определителю исходной матрицы.

    Решение.

    Если отталкиваться от рассмотренного свойства определителя, то определитель матрицы, полученной после всех указанных в задаче преобразований, будет равен определителю матрицы А .

    Сначала вычислим определитель исходной матрицы А :

    Теперь выполним необходимые преобразования матрицы А .

    Прибавим к элементам третьего столбца матрицы соответствующие элементы второго столбца матрицы, предварительно умножив их на (-2) . После этого матрица примет вид:

    К элементам третьего столбца полученной матрицы прибавим соответствующие элементы первого столбца, умноженные на :

    Вычислим определитель полученной матрицы и убедимся, что он равен определителю матрицы А , то есть, -24 :

    Определитель квадратной матрицы равен сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения .

    Здесь - алгебраическое дополнение элемента матрицы , .

    Это свойство позволяет вычислять определители матриц порядка выше чем 3 на 3 путем сведения их к сумме нескольких определителей матриц порядка на единицу ниже. Иными словами – это рекуррентная формула вычисления определителя квадратной матрицы любого порядка. Рекомендуем ее запомнить в силу достаточно частой применимости.

    Разберем несколько примеров.

    Пример.

    порядка 4 на 4 , разложив его

    • по элементам 3-ей строки,
    • по элементам 2-ого столбца.

    Решение.

    Используем формулу разложения определителя по элементам 3-ей строки

    Имеем

    Так задача нахождения определителя матрицы порядка 4 на 4 свелась к вычислению трех определителей матриц порядка 3 на 3 :

    Подставив полученные значения, приходим к результату:

    Используем формулу разложения определителя по элементам 2-ого столбца


    и действуем аналогично.

    Не будем подробно расписывать вычисление определителей матриц третьего порядка.

    Пример.

    Вычислите определитель матрицы порядка 4 на 4 .

    Решение.

    Можно разложить определитель матрицы по элементам любого столбца или любой строки, однако выгоднее выбирать строку или столбец, содержащую наибольшее количество нулевых элементов, так как это поможет избежать лишних вычислений. Разложим определитель по элементам первой строки:

    Вычислим полученные определители матриц порядка 3 на 3 по известной нам формуле:

    Подставляем результаты и получаем искомое значение

    Пример.

    Вычислите определитель матрицы порядка 5 на 5 .

    Решение.

    В четвертой строке матрицы наибольшее количество нулевых элементов среди всех строк и столбцов, поэтому целесообразно разложить определитель матрицы именно по элементам четвертой строки, так как в этом случае нам потребуется меньше вычислений.

    Полученные определители матриц порядка 4 на 4 были найдены в предыдущих примерах, так что воспользуемся готовыми результатами:

    Пример.

    Вычислите определитель матрицы порядка 7 на 7 .

    Решение.

    Не следует сразу бросаться раскладывать определитель по элементам какой либо строки или столбца. Если внимательно посмотреть на матрицу, то можно заметить, что элементы шестой строки матрицы можно получить умножением соответствующих элементов второй строки на двойку. То есть, если к элементам шестой строки прибавить соответствующие элементы второй строки, умноженные на (-2) , то определитель не изменится в силу седьмого свойства, а шестая строка полученной матрицы будет состоять из нулей. Определитель такой матрицы равен нулю по второму свойству.

    Ответ:

    Следует отметить, что рассмотренное свойство позволяет вычислить определители матриц любых порядков, однако приходится выполнять массу вычислительных операций. В большинстве случаев определитель матриц порядка выше третьего выгоднее находить методом Гаусса, который мы рассмотрим ниже.

    Сумма произведений элементов какой-либо строки (столбца) квадратной матрицы на алгебраические дополнения соответствующих элементов другой строки (столбца) равна нулю.

    Пример.

    Покажите, что сумма произведений элементов третьего столбца матрицы на алгебраические дополнения соответствующих элементов первого столбца равна нулю.

    Решение.


    Определитель произведения квадратных матриц одного порядка равен произведению их определителей, то есть, , где m – натуральное число большее единицы, A k , k=1,2,…,m – квадратные матрицы одного порядка.

    Пример.

    Убедитесь, что определитель произведения двух матриц и равен произведению их определителей.

    Решение.

    Найдем сначала произведение определителей матриц А и В :

    Сейчас выполним умножение матриц и вычислим определитель получившейся матрицы:

    Таким образом, , что и требовалось показать.

Вычисление определителя матрицы методом Гаусса.

Опишем суть этого метода. Матрица А с помощью элементарных преобразований приводится к такому виду, чтобы в первом столбце все элементы, кроме стали нулевыми (это сделать всегда возможно, если определитель матрицы А отличен от нуля). Эту процедуру опишем чуть позже, а сейчас поясним, для чего это делается. Нулевые элементы получаются для того, чтобы получить самое простое разложение определителя по элементам первого столбца. После такого преобразования матрицы А , учитывая восьмое свойство и , получим

где - минор (n-1)-ого порядка , получающийся из матрицы А вычеркиванием элементов ее первой строки и первого столбца.

С матрицей, которой соответствует минор , проделывается такая же процедура получения нулевых элементов в первом столбце. И так далее до окончательного вычисления определителя.

Теперь осталось ответить на вопрос: «Как получать нулевые элементы в первом столбце»?

Опишем алгоритм действий.

Если , то к элементам первой строки матрицы прибавляются соответствующие элементы k-ой строки, в которой . (Если все без исключения элементы первого столбца матрицы А нулевые, то ее определитель равен нулю по второму свойству и не нужен никакой метод Гаусса). После такого преобразования «новый» элемент будет отличен от нуля. Определитель «новой» матрицы будет равен определителю исходной матрицы в силу седьмого свойства.

Теперь мы имеем матрицу, у которой . При к элементам второй строки прибавляем соответствующие элементы первой строки, умноженные на , к элементам третьей строки – соответствующие элементы первой строки, умноженные на . И так далее. В заключении к элементам n-ой строки прибавляем соответствующие элементы первой строки, умноженные на . Так будет получена преобразованная матрица А , все элементы первого столбца которой, кроме , будут нулевыми. Определитель полученной матрицы будет равен определителю исходной матрицы в силу седьмого свойства.

Разберем метод при решении примера, так будет понятнее.

Пример.

Вычислить определитель матрицы порядка 5 на 5 .

Решение.

Воспользуемся методом Гаусса. Преобразуем матрицу А так, чтобы все элементы ее первого столбца, кроме , стали нулевыми.

Так как изначально элемент , то прибавим к элементам первой строки матрицы соответствующие элементы, например, второй строки, так как :

Знак « ~ » означает эквивалентность.

Теперь прибавляем к элементам второй строки соответствующие элементы первой строки, умноженные на , к элементам третьей строки – соответствующие элементы первой строки, умноженные на , и аналогично действуем вплоть до шестой строки:

Получаем

С матрицей проводим ту же процедуру получения нулевых элементов в первом столбце:

Следовательно,

Сейчас выполняем преобразования с матрицей :

Замечание.

На некотором этапе преобразования матрицы по методу Гаусса может возникнуть ситуация, когда все элементы нескольких последних строк матрицы станут нулевыми. Это будет говорить о равенстве определителя нулю.

Подведем итог.

Определителем квадратной матрицы, элементы которой есть числа, является число. Мы рассмотрели три способа вычисления определителя:

  1. через сумму произведений сочетаний элементов матрицы;
  2. через разложение определителя по элементам строки или столбца матрицы;
  3. методом приведения матрицы к верхней треугольной (методом Гаусса).

Были получены формулы для вычисления определителей матриц порядка 2 на 2 и 3 на 3 .

Мы разобрали свойства определителя матрицы. Некоторые из них позволяют быстро понять, что определитель равен нулю.

При вычислении определителей матриц порядка выше 3 на 3 целесообразно использовать метод Гаусса: выполнить элементарные преобразования матрицы и привести ее к верхней треугольной. Определитель такой матрицы равен произведению всех элементов, стоящих на главной диагонали.

1. Определитель не меняется при транспонировании.

2. Если одна из строк определителя состоит из нулей, то определитель равен нулю.

3. Если в определителе переставить две строки, определитель поменяет знак.

4. Определитель, содержащий две одинаковые строки, равен нулю.

5. Если все элементы некоторой строки определителя умножить на некоторое число k, то сам определитель умножится на k.

6. Определитель, содержащий две пропорциональные строки, равен нулю.

7. Если все элементы i-й строки определителя представлены в виде суммы двух слагаемых a i j = b j + c j (j= ), то определитель равен сумме определителей, у которых все строки, кроме i-ой, - такие же, как в заданном определителе, а i-я строка в одном из слагаемых состоит из элементов b j , в другом - из элементов c j .

8. Определитель не меняется, если к элементам одной из его строк прибавляются соответствующие элементы другой строки, умноженные на одно и то же число.

Замечание. Все свойства остаются справедливыми, если вместо строк взять столбцы.

Минором M i j элемента a i j определителя d n-го порядка называется определитель порядка n-1, который получается из d вычеркиванием строки и столбца, содержащих данный элемент.

Алгебраическим дополнением элемента a i j определителя d называется его минор M i j , взятый со знаком (-1) i + j . Алгебраическое дополнение элемента a i j будем обозначать A i j . Таким образом, A i j = (-1) i + j M i j .

Способы практического вычисления определителей, основанные на том, что определитель порядка n может быть выражен через определители более низких порядков, дает следующая теорема.

Теорема (разложение определителя по строке или столбцу).

Определитель равен сумме произведений всех элементов произвольной его строки (или столбца) на их алгебраические дополнения. Иначе говоря, имеет место разложение d по элементам i-й строки d = a i 1 A i 1 + a i 2 A i 2 +... + a i n A i n (i = )

или j- го столбца d = a 1 j A 1 j + a 2 j A 2 j +... + a n j A n j (j = ).

В частности, если все элементы строки (или столбца), кроме одного, равны нулю, то определитель равен этому элементу, умноженному на его алгебраическое дополнение.



Пример 1.4. Не вычисляя определителя , показать, что он равен нулю. Решение. Вычтем из второй строки первую, получим определитель , равный исходному. Если из третьей строки также вычесть первую, то получится определитель , в котором две строки пропорциональны. Такой определитель равен нулю.

Пример 1.5. Вычислить определитель D = , разложив его по элементам второго столбца.

Решение. Разложим определитель по элементам второго столбца:

D = a 12 A 12 + a 22 A 22 +a 32 A 32 =

Пример 1.6. Вычислить определитель

A =
,в котором все элементы по одну сторону от главной диагонали равны нулю. Решение. Разложим определитель А по первой строке: A = a 11 A 11 = . Определитель, стоящий справа, можно снова разложить по первой строке, тогда получим:

A =
.И так далее. После n шагов придем к равенству A = а 11 а 22. .. a nn.

3.Основные понятия систем линейных уравнений. Теорема Крамера.

Определение . Система линейных уравнений - это объединение из n линейныхуравнений, каждое из которых содержит k переменных. Записывается это так:

Многие, впервые сталкиваясь с высшей алгеброй, ошибочно полагают, что числоуравнений обязательно должно совпадать с числом переменных. В школьной алгебре так обычно и бывает, однако для высшей алгебры это, вообще говоря, неверно.

Определение . Решение системы уравнений - это последовательность чисел (k 1 ,k 2 , ..., k n ), которая является решением каждого уравнения системы, т.е. при подстановке в это уравнение вместо переменных x 1 , x 2 , ..., x n дает верное числовое равенство.

Соответственно, решить систему уравнений - значит найти множество всех ее решений или доказать, что это множество пусто. Поскольку число уравнений и число неизвестных может не совпадать, возможны три случая:

1. Система несовместна, т.е. множество всех решений пусто. Достаточно редкий случай, который легко обнаруживается независимо от того, каким методом решатьсистему.

2. Система совместна и определена, т.е. имеет ровно одно решение. Классический вариант, хорошо известный еще со школьной скамьи.

3. Система совместна и не определена, т.е. имеет бесконечно много решений. Это самый жесткий вариант. Недостаточно указать, что «система имеет бесконечное множество решений» - надо описать, как устроено это множество.

Определение . Переменная x i называется разрешенной , если она входит только в одно уравнение системы, причем с коэффициентом 1. Другими словами, в остальных уравнениях коэффициент при переменной x i должен быть равен нулю.

Если в каждом уравнении выбрать по одной разрешенной переменной, получим набор разрешенных переменных для всей системы уравнений. Сама система, записанная в таком виде, тоже будет называться разрешенной. Вообще говоря, одну и ту же исходную систему можно свести к разным разрешенным, однако сейчас нас это не волнует. Вот примеры разрешенных систем:

Обе системы являются разрешенными относительно переменных x 1 , x 3 и x 4 . Впрочем, с тем же успехом можно утверждать, что вторая система - разрешенная относительно x 1 , x 3 и x 5 . Достаточно переписать самое последнее уравнение в видеx 5 = x 4 .

Теперь рассмотрим более общий случай. Пусть всего у нас k переменных, из которых r являются разрешенными. Тогда возможны два случая:

1. Число разрешенных переменных r равно общему числу переменных k : r = k . Получаем систему из k уравнений, в которых r = k разрешенных переменных. Такаясистема является совместной и определенной, т.к. x 1 = b 1 , x 2 = b 2 , ..., x k = b k ;

2. Число разрешенных переменных r меньше общего числа переменных k : r < k . Остальные (k r ) переменных называются свободными - они могут принимать любые значения, из которых легко вычисляются разрешенные переменные.

Так, в приведенных выше системах переменные x 2 , x 5 , x 6 (для первой системы) и x 2 , x 5 (для второй) являются свободными. Случай, когда есть свободные переменные, лучше сформулировать в виде теоремы…

Как решить?: – Решение системы линейных уравнений методом подстановки («школьный метод»).
– Решение системы методом почленного сложения (вычитания) уравнений системы.
–Решение системы по формулам Крамера.
–Решение системы с помощью обратной матрицы.
–Решение системы методом Гаусса.

КРАМЕР

Сначала рассмотрим правило Крамера для системы двух линейных уравнений с двумя неизвестными. Существуют системы линейных уравнений с двумя переменными, которые целесообразно решать именно по правилу Крамера!

Рассмотрим систему уравнений

На первом шаге вычислим определитель , его называют главным определителем системы .

Если , то система имеет бесконечно много решений или несовместна (не имеет решений). В этом случае правило Крамера не поможет, нужно использовать метод Гаусса .

Если , то система имеет единственное решение, и для нахождения корней мы должны вычислить еще два определителя: и

На практике вышеуказанные определители также могут обозначаться латинской буквой .

Корни уравнения находим по формулам:,

Пример 7

Решить систему линейных уравнений

Мы видим, что коэффициенты уравнения достаточно велики, в правой части присутствуют десятичные дроби с запятой. Запятая – довольно редкий гость в практических заданиях по математике, эту систему я взял из эконометрической задачи.

Как решить такую систему? Можно попытаться выразить одну переменную через другую, но в этом случае наверняка получатся страшные навороченные дроби, с которыми крайне неудобно работать, да и оформление решения будет выглядеть просто ужасно. Можно умножить второе уравнение на 6 и провести почленное вычитание, но и здесь возникнут те же самые дроби.

Что делать? В подобных случаях и приходят на помощь формулы Крамера.

Значит, система имеет единственное решение.

;

;

Как видите, корни получились иррациональными, и найдены приближенно, что вполне приемлемо (и даже обыденно) для задач эконометрики.

Комментарии здесь не нужны, поскольку задание решается по готовым формулам, однако, есть один нюанс. Когда используете данный метод, обязательным фрагментом оформления задания является следующий фрагмент: « , значит, система имеет единственное решение» . В противном случае рецензент может Вас наказать за неуважение к теоремеКрамера.

Совсем не лишней будет проверка, которую удобно провести на калькуляторе: подставляем приближенные значения в левую часть каждого уравнения системы. В результате с небольшой погрешностью должны получиться числа, которые находятся в правых частях.

Формулы Крамера

Метод Крамера состоит в том, что мы последовательно находим главный определитель системы (5.3), т.е. определитель матрицы А

и n вспомогательных определителей D i (i= ), которые получаются из определителя D заменой i-го столбца столбцом свободных членов.

Формулы Крамера имеют вид:

D × x i = D i (i = ). (5.4)

Из (5.4) следует правило Крамера, которое дает исчерпывающий ответ на вопрос о совместности системы (5.3): если главный определитель системы отличен от нуля, то система имеет единственное решение, определяемое по формулам:

Если главный определитель системы D и все вспомогательные определители D i = 0 (i= ), то система имеет бесчисленное множество решений. Если главный определитель системы D = 0, а хотя бы один вспомогательный определитель отличен от нуля, то система несовместна.

Пример 1.14 . Решить методом Крамера систему уравнений:

x 1 + x 2 + x 3 + x 4 = 5, x 1 + 2x 2 - x 3 + 4x 4 = -2, 2x 1 - 3x 2 - x 3 - 5x 4 = -2, 3x 1 + x 2 +2x 3 + 11 x 4 = 0.

Решение. Главный определитель этой системы D = = -142 ¹ 0, значит, система имеет единственное решение. Вычислим вспомогательные определители D i (i= ), получающиеся из определителя D путем замены в нем столбца, состоящего из коэффициентов при x i, столбцом из свободных членов: D 1 = = - 142, D 2 = = - 284, D 3 = = - 426,

D 4 = = 142. Отсюда x 1 = D 1 /D = 1, x 2 = D 2 /D = 2, x 3 = D 3 /D = 3, x 4 = D 4 /D = -1, решение системы - вектор С=(1, 2, 3, -1) T .

Основные понятия систем линейных уравнений. Метод гаусса.

СМОТРИ ВЫШЕ.

Метод Гаусса - Жордана (метод полного исключения неизвестных) - метод, который используется для решения квадратных систем линейных алгебраических уравнений, нахождения обратной матрицы, нахождения координат вектора в заданном базисе или отыскания ранга матрицы. Метод является модификацией метода Гаусса.

Алгоритм

1. Выбирают первый слева столбец матрицы, в котором есть хоть одно отличное от нуля значение.

2. Если самое верхнее число в этом столбце есть ноль, то меняют всю первую строку матрицы с другой строкой матрицы, где в этой колонке нет нуля.

3. Все элементы первой строки делят на верхний элемент выбранного столбца.

4. Из оставшихся строк вычитают первую строку, умноженную на первый элемент соответствующей строки, с целью получить первым элементом каждой строки (кроме первой) ноль.

6. После повторения этой процедуры раз получают верхнюю треугольную матрицу

7. Вычитаем из предпоследней строки последнюю строку, умноженную на соответствующий коэффициент, с тем, чтобы в предпоследней строке осталась только 1 на главной диагонали.

8. Повторяют предыдущий шаг для последующих строк. В итоге получают единичную матрицу и решение на месте свободного вектора (с ним необходимо проводить все те же преобразования).

9. Чтобы получить обратную матрицу, нужно применить все операции в том же порядке к единичной матрице.

Метод Гаусса

Исторически первым, наиболее распространенным методом решения систем линейных уравнений является метод Гаусса, или метод последовательного исключения неизвестных. Сущность этого метода состоит в том, что посредством последовательных исключений неизвестных данная система превращается в ступенчатую (в частности, треугольную) систему, равносильную данной. При практическом решении системы линейных уравнений методом Гаусса удобнее приводить к ступенчатому виду не саму систему уравнений, а расширенную матрицу этой системы, выполняя элементарные преобразования над ее строками. Последовательно получающиеся в ходе преобразования матрицы обычно соединяют знаком эквивалентности.

Пример 1 .13. Решить систему уравнений методом Гаусса:x + y - 3z = 2, 3x - 2y + z = - 1, 2x + y - 2z = 0.

Решение. Выпишем расширенную матрицу данной системы

и произведем следующие элементарные преобразования над ее строками: а) из ее второй и третьей строк вычтем первую, умноженную соответственно на 3 и 2: ~ ;

б) третью строку умножим на (-5) и прибавим к ней вторую: .

В результате всех этих преобразований данная система приводится к треугольному виду: x + y - 3z = 2, -5y + 10z = -7, - 10z = 13.

Из последнего уравнения находим z = -1,3. Подставляя это значение во второе уравнение, имеем y = -1,2. Далее из первого уравнения получим x = - 0,7

ИЗ ТЕТРАДИ :

Метод Гаусса

Метод состоит из двух частей- прямого и обратного хода.

Прямой ход заключается в поведение расширение матрицы СЛУ к ступенчатому виду с помощью элементарных преобразований строк. В ступенчатом виде матрице каждая последующая строка имеет в начале нулей больше, чем предыдущая – или она нулевая

Пример:

Элементарные преобразование строк матрицы- это:

1)прибавление чисел одной строки матрицы, умножены на какое-нибудь число, к одной из нижних строк матрицы.

2)Перемена двух строчек местами

Обратный ход метод Гаусса заключается в последовательном выражении одних переменных через других, начиная с нижней нулевой строки. В результате получается общее решение.

После прямого хода возможны 3 варианта ступенчатого вида расширенной матрицы:

1)Каждая след.строка имеет в начале ровно не один ноль больше, чем предыдущая

Пример:

Записываем по строчкам уравнение и начинаем находить значение переменных с нижней строчки.

4Х 4 =8Þ Х 4 =2

Подставляем в предыдущее уравнение

2Х 3 -3Х 4 =-8 т.е. 2Х 3 -3 * 2=-8 или 2Х 3 =-2, Þ Х 3 =-1 , подставляем Х3 и Х4 во вторую строчку и т.д. Получаем единственно решение СЛУ

2) Число ненулевых строк меньше числа переменных. Тогда одни из строк содержит в начале нулей по крайней мере на 2 больше предыдущей и считаем, что последующая ненулевая строка не имеет вид(0…0 b) где число b=0

Например:

3) Последняя ненулевая строка имеет вид (0…0/b),где b=0 ей соответствует противоречивые равенства о=b,поэтому система несовместима

Решение СЛУ методом Гаусса

2Х 1 +3Х 2 +Х 3 =1

4Х 1 +5Х 2 +4Х 3 =7

6Х 1 +10Х 2 -3Х 3 =-10

Составляем расширенную матрицу прямой ход.

· Определителем квадратной матрицы А п-го порядка или определителем п-го порядка называется число, равное алгебраической сумме п ! членов, каждый из которых является произведением п элементов матрицы, взятых по одному из каждой строки и каждого столбца с определенными знаками. Определитель обозначается или .

Определитель второго порядка есть число, выраженное следующим образом: . Например .

Определитель третьего порядка вычисляется по правилу треугольников (правило Саррюса): .

Пример . .

Замечание . Практически определители третьего порядка, как и более высоких порядков, вычисляются с использованием свойств определителей.

Свойства определителей п-го порядка .

1. Величина определителя не изменится, если каждую строку (столбец) заменить столбцом (строкой) с тем же номером – транспонировать .

2. Если одна из строк (столбец) определителя состоит из нулей, то величина определителя равна нулю.

3. Если в определителе поменять местами две строки (столбца), то абсолютная величина определителя не изменится, а знак поменяется на противоположный.

4. Определитель, содержащий две одинаковые строки (столбца), равен нулю.

5. Общий множитель всех элементов строки (столбца) можно вынести за знак определителя.

· Минором некоторого элемента определителя п -го порядка называется определитель (п -1)-го порядка, полученный из исходного вычеркиванием той строки и того столбца, на пересечении которых находится выбранный элемент. Обозначение: .

· Алгебраическим дополнением элемента определителя называется его минор, взятый со знаком . Обозначение: Т.о. =.

6. Определитель квадратной матрицы равен сумме произведений элементов любой строки (или столбца) на их алгебраические дополнения (теорема разложения ).

7. Если каждый элемент -той строки представляет собой сумму k слагаемых, то определитель представляется в виде суммы k определителей, у которых все строки, кроме -той строки, такие же как в исходном определителе, а -тая строка в первом определителе состоит из первых слагаемых, во втором – из вторых и т.д. То же верно и для столбцов.

8. Определитель не изменится, если к одной из строк (столбцов) прибавить другую строку (столбец), умноженную на число .

Следствие . Если к строке (столбцу) определителя прибавить линейную комбинацию других ее строк (столбцов), то определитель не изменится.

9. Определитель диагональной матрицы равен произведению элементов, стоящих на главной диагонали, т.е.

Замечание . Определитель треугольной матрицы также равен произведению элементов, стоящих на главной диагонали.

Перечисленные свойства определителей позволяют значительно упростить их вычисление, что особенно важно для определителей высоких порядков. При этом целесообразно так преобразовать исходную матрицу, чтобы преобразованная матрица имела строку или столбец, содержащую как можно больше нулей («обнуление» строк или столбцов).


Примеры. Вычислим еще раз определитель , приведенный в предыдущем примере, используя свойства определителей.

Решение : Заметим, что в первой строке имеется общий множитель - 2, а во второй - общий множитель 3, вынесем их за знак определителя (по свойству 5). Далее разложим определитель, например, по первому столбцу, используя свойство 6 (теорему разложения).

Наиболее эффективен метод приведения определителя к диагональному или к треугольному виду . Для вычисления определителя матрицы достаточно выполнить такое преобразование матрицы, которое не изменит определителя и позволит превратить матрицу в диагональную.

В заключении заметим, что если определитель квадратной матрицы равен нулю , то матрица называется вырожденной (или особенной), в противном случае – невырожденной .

Она поможет не только чайникам, но даже тем, кто впервые услышал слово «определитель». Минуло два года с тех пор, когда на сайте было всего десять страничек, и вот, после моего долгого-долгого путешествия в мир матана, всё возвращается на круги своя.

Представьте, что вам нужно вычислить определитель третьего порядка, разложив его по элементам строки (столбца). Хотя чего тут представлять – нужно же =) Над ним можно сидеть 5 минут, а можно 2-3 минуты. Или даже в районе одной минуты. Время, которое вы потратите, зависит не только от вашего опыта, но и от знаний свойств определителей. Не редкость, когда процесс решения вполне реально сократить до считанных секунд, а иногда и сразу увидеть результат! «Ерунда, чего экономить на спичках, и так всё решим», – скажут некоторые. Допустим. И не допустим оплошностей;-) Но как быть с достаточно распространённым на практике определителем 4-го порядка? Воевать с этим перцем придётся уже 10-20 минут. И это будет даже не бой, а бойня, поскольку очень велика вероятность вычислительной ошибки, которая «завернёт» вас на второй круг решения. А если определитель пятого порядка? Спасёт только понижение порядка определителя. Да, такие примеры тоже встречаются в контрольных работах.

Материалы данной страницы позволят значительно улучшить вашу технику решения определителей и упростят дальнейшее освоение высшей математики.

Эффективные методы вычисления определителя

В первую очередь коснёмся не свойств определителя, а как раз методов его рационального вычисления. Эти приёмы решения лежат на поверхности и понятны многим, но всё-таки остановимся на них подробнее. Предполагается, что читатель уже умеет достаточно уверенно раскрывать определитель третьего порядка. Как известно, данный определитель можно раскрыть 6 стандартными способами: по любой строке или любому столбцу. Казалось бы, без разницы, ведь ответ получится один и тот же. Но все ли способы одинаково легкИ? Нет. В большинстве случаев есть менее выгодные пути и более выгодные пути решения.

Рассмотрим определитель , который я обильно покрыл татуировками ещё на первом уроке. В той статье мы подробно, с картинками разложили его по первой строке. Первая строка – это хорошо и академично, однако нельзя ли быстрее достичь результата? В определителе есть ноль, и, раскрывая его по второй строке либо по второму столбцу, вычислений заметно поубавится!

Разложим определитель по второму столбцу:

На практике нулевые элементы игнорируются, и запись решения принимает более компактный вид:

Задание 1

Раскройте данный определитель по второй строке, используя укороченную запись.

Решение в конце урока.

Если в строке (либо столбце) два нуля, то это вообще настоящий подарок. Рассмотрим определитель . Здесь два нуля в третьей строке, по ней и раскрываем:

Вот и всё решение!

Особый случай, когда определитель имеет так называемый ступенчатый или треугольный вид , например: – в таком определителе все числа, расположенные ниже главной диагонали , равны нулю.

Разложим его по первому столбцу:

В практических заданиях удобно руководствоваться следующим правилом – ступенчатый определитель равен произведению чисел его главной диагонали :

Аналогичный принцип справедлив и для ступенчатых определителей других порядков, например:

Треугольные определители появляются в некоторых задачах линейной алгебры, и их решение чаще всего оформляют именно так.

А если в строке (столбце) определителя находятся одни нули ? Ответ, думаю, понятен. Мы ещё вернёмся к этому вопросу в свойствах определителя.

Теперь представим, что долгожданные баранки не положены в новогодний подарок. Так давайте же распотрошим нехорошего Санта-Клауса!

Здесь нет нулей, но всё равно существует способ облегчить себе жизнь. Данный определитель оптимальнее разложить по третьему столбцу, поскольку там самые маленькие числа. При этом запись решения принимает весьма лаконичный вид:

Резюмируя параграф, сформулируем золотое правило вычислений:

Определитель выгоднее раскрывать по ТОЙ строке (столбцу), где:

1) нулей побольше ;
2) числа поменьше .

Естественно, это справедливо и для определителей высших порядков.

Небольшой пример для закрепления материала:

Задание 2

Вычислить определитель, раскрыв его по строке либо столбцу, используя при этом наиболее рациональный способ

Это пример для самостоятельного решения, оптимальное решение и ответ – в конце урока.

И ещё один важный совет: не комплексуйте! Не нужно «зацикливаться» на традиционном разложении по первой строке либо первому столбцу. Как короче – так и решайте!

Свойства определителя

Рассмотрим старых знакомых первого урока: матрицу и её определитель .

На всякий случай повторю элементарное различие между понятиями: матрица – это таблица элементов , а определитель – это число .

При транспонировании матрицы величина её определителя не меняется

Транспонируем матрицу:

Согласно свойству, определитель транспонированной матрицы равен тому же значению: . Желающие могут убедиться в этом самостоятельно.

В ходу и более простецкая формулировка данного свойства: если транспонировать определитель, то его величина не изменится.

Запишем оба определителя рядышком и проанализируем один важный момент:

В результате транспонирования первая строка стала первым столбцом, вторая строка – вторым столбцом, третья строка – третьим столбцом. Строки стали столбцами, а результат не изменился. Из чего следует важный факт: строки и столбцы определителя равноправны . Иными словами, если какое-нибудь свойство справедливо для строки, то аналогичное свойство справедливо и для столбца! В действительности с этим мы уже давно столкнулись – ведь определитель можно раскрыть как по строке, так равноправно и по столбцу.

Не нравятся числа в строках? Транспонируйте определитель! Возникает только один вопрос, зачем? Практический смысл рассмотренного свойства невелик, но его полезно закинуть в багаж знаний, чтобы лучше понимать другие задачи высшей математики. Например, сразу становится ясно, почему при исследовании векторов на компланарность их координаты можно записать как в строки определителя, так и в столбцы.

Если две строки (или два столбца) определителя поменять местами,
то определитель сменит знак

! Помните , речь идёт об определителе! В самой матрице переставлять ничего нельзя!

Сыграем в кубик-рубик с определителем .

Поменяем первую и третью строку местами:

Определитель сменил знак.

Теперь в полученном определителе переставим вторую и третью строки:

Определитель ещё раз изменил знак.

Переставим второй и третий столбец:

То есть, любая парная перестановка строк (столбцов) влечёт изменение знака определителя на противоположный .

Игры играми, но на практике такие действия лучше не использовать . Толку от них особого нет, а вот запутаться и допустить ошибку несложно. Однако приведу одну из немногих ситуаций, когда в этом действительно есть смысл. Предположим, что в ходе решения некоторого примера у вас нарисовался определитель со знаком «минус»:

Раскроем его, скажем, по первой строке:

Очевидное неудобство состоит в том, что пришлось выполнять лишние реверансы – ставить большие скобки, а затем их раскрывать (кстати, крайне не рекомендую выполнять подобные действия «за один присест» устно).

Чтобы избавиться от «минуса», рациональнее поменять местами любые две строки или любые два столбца. Переставим, например, первую и вторую строки:

Выглядит стильно, но в большинстве случаев с отрицательным знаком целесообразнее разбираться другим способом (читайте дальше).

Рассмотренное действие опять же помогает лучше понять, например, некоторые свойства векторного произведения векторов или смешанного произведения векторов.

А вот это уже более интересно:

Из строки (столбца) определителя можно вынести общий множитель

!!! Внимание! В правиле речь идёт об ОДНОЙ строке или об ОДНОМ столбце определителя. Пожалуйста, не путайте с матрицами , в матрице множитель выносится/вносится у ВСЕХ чисел сразу.

Начнём с частного случая правила – вынесения «минус единицы» или просто «минуса».

Встречаем очередного пациента: .

В данном определителе слишком много минусов и неплохо бы сократить их количество.

Вынесем –1 из первой строки:

Или короче:

Минус перед определителем, как уже демонстрировалось – не есть удобно. Смотрим на вторую строку определителя и замечаем, что минусов там тоже многовато.

Вынесем «минус» из второй строки:

Что можно сделать ещё? Все числа второго столбца делятся на 4 без остатка. Вынесем 4 из второго столбца:

Справедливо и обратное правило – множитель можно не только вынести, но и внести , причём, в ЛЮБУЮ строку или в ЛЮБОЙ столбец определителя.

Ради шутки умножим на 4 третью строку определителя:

Дотошные умы могут убедиться в равенстве исходного и полученного определителей (верный ответ: –216).

На практике часто выполняют внесение минуса. Рассмотрим определитель . Отрицательный знак перед определителем можно внести в ЛЮБУЮ строку или в ЛЮБОЙ столбец. Самым лучшим кандидатом является третий столбец, в него и внесём минус:

Также замечаем, что все числа первого столбца делятся на 2 без остатка, но стОит ли выносить «двойку»? Если вы собираетесь понижать порядок определителя (о чём пойдет речь в заключительном разделе), то, безусловно, стОит. Но если раскрывать определитель по строке (столбцу), то «двойка» впереди только удлинит запись решения.

Однако если множитель велик, например, 13, 17 и т.п., то его, конечно, по-любому выгоднее вынести. Познакомимся с маленьким монстром: . Из первой строки вынесем –11, из второй строки вынесем –7:

Вы скажете, вычисления и так быстро щёлкаются на обычном калькуляторе? Это правда. Но, во-первых, его может не оказаться под рукой, а во-вторых, если дан определитель 3-го или 4-го порядка с большими числами, то и стучать по кнопкам уже не сильно захочется.

Задание 3

Вычислить определитель с помощью вынесения множителей из строк и столбцов

Это пример для самостоятельного решения.

Ещё пара полезных правил:

Если две строки (столбца) определителя пропорциональны
(как частный случай – одинаковы), то данный определитель равен нулю

Здесь пропорциональны соответствующие элементы первой и второй строки:

Иногда говорят, что строки определителя линейно зависимы . Так как при транспонировании величина определителя не меняется, то из линейной зависимости строк следует и линейная зависимость столбцов.

В пример можно вложить геометрический смысл – если считать, что в строках записаны координаты векторов пространства, то первые два вектора с пропорциональными координатами будут коллинеарны, а значит, все три вектора – линейно зависимы , то есть компланарны.

В следующем примере пропорциональны три столбца (и, к слову, три строки тоже):

Здесь второй и третий столбец одинаковы, это частный случай – когда коэффициент пропорциональности равен единице

Перечисленные свойства вполне можно использовать на практике. Но помните, повышенный уровень знаний иногда наказуем;-) Поэтому, возможно, лучше раскрывать такие определители обычным способом (зная наперёд, что получится ноль).

Следует отметить, что обратное в общем случае неверно – если определитель равен нулю, то из этого ещё не следует , что его строки (столбцы) пропорциональны. То есть линейная зависимость строк/столбцов может быть и не явной.

Существуют и более очевидный признак, когда сразу можно сказать, что определитель нулевой:

Определитель с нулевой строкой (столбцом) равен нулю

«Любительская» проверка элементарна, раскроем определитель по первому столбцу:

Впрочем, результат не изменится, если раскрыть определитель по любой строке или любому столбцу.

Выжимаем второй стакан апельсинового сока:

Какие свойства определителей полезно знать?

1) Величина определителя не меняется при транспонировании . Свойство запоминаем.

2) Любая парная перестановка строк (столбцов) меняет знак определителя на противоположный . Свойство тоже запоминаем и стараемся не использовать во избежание путаницы.

3) Из строки (столбца) определителя можно вынести множитель (и внести его обратно) . Используем там, где это выгодно.

4) Если строки (столбцы) определителя пропорциональны, то он равен нулю. Определитель с нулевой строкой (столбцом) равен нулю.

На протяжении урока неоднократно наблюдалась элементарная закономерность – чем больше в строке (столбце) нулей, тем легче вычислить определитель. Возникает вопрос, а нельзя ли нули организовать специально с помощью какого-нибудь преобразования? Можно! Познакомимся ещё с одним очень мощным свойством:

Понижение порядка определителя

Очень хорошо, если вы уже разобрались с методом Гаусса и имеете опыт решения систем линейных уравнений этим способом. Фактически сформулированное ниже свойство дублирует одно из элементарных преобразований .

Чтобы нагулять аппетит раздавим маленького лягушонка:

К строке определителя можно прибавить другую строку, умноженную на ненулевое число. При этом величина определителя не изменится

Пример: в определителе получим ноль слева вверху.

Для этого вторую строку мысленно либо на черновике умножим на 3: (–3, 6) и к первой строке прибавим вторую строку, умноженную на 3 :

Результат записываем в первую строку :

Проверка:

Теперь в том же определителе получим ноль справа внизу. Для этого ко второй строке прибавим первую строку, умноженную (мысленно) на –2 ):

Результат записываем во вторую строку :

Обратите внимание : при элементарном преобразовании меняется ТА строка, к которой прибавляЮТ .

Сформулируем зеркальное правило для столбцов:

К столбцу определителя можно прибавить другой столбец, умноженный на ненулевое число. При этом величина определителя не изменится

Возьмём за лапки животное и, используя данное преобразование, получим ноль слева вверху. Для этого мысленно либо на черновике умножим второй столбец на –3: и к первому столбцу прибавим второй столбец, умноженный на –3 :

Результат запишем в первый столбец :

И, наконец, в определителе получим ноль справа внизу. Для этого ко второму столбцу прибавим первый столбец, умноженный (мысленно) на 2 (смотрим и считаем справа налево ):

Результат помещаем во второй столбец :

При элементарном преобразовании меняется ТОТ столбец, к которому прибавляЮТ .

Постарайтесь качественно переварить нижеследующий пример.

Отправим в суп подросшее земноводное:

Задача состоит в том, чтобы с помощью элементарных преобразований понизить порядок определителя до второго порядка.

С чего начать? Сначала в определителе нужно выбрать число-«мишень». В качестве «мишени» почти всегда выступает единица либо –1. Смотрим на определитель и замечаем, что здесь даже выбор есть. Пусть числом-«мишенью» будет элемент :

Примечание : смысл двойных подстрочных индексов можно узнать в статье Правило Крамера. Матричный метод . В данном случае индексы элемента говорят нам о том, что он располагается во второй строке, третьем столбце.

Идея состоит в том, чтобы получить два нуля в третьем столбце:

Либо получить два нуля во второй строке:

Во второй строке числа поменьше (не забываем золотое правило), поэтому выгоднее взять именно её. А третий столбец с числом-«мишенью» останется неизменным:

Ко второму столбцу прибавляем третий столбец :

Тут и умножать ничего не пришлось.

Результат записываем во второй столбец:

К первому столбцу прибавляем третий столбец, умноженный (мысленно) на –2 :

Результат записываем в первый столбец, раскладываем определитель по второй строке:

Как мы понизили порядок определителя? Получили два нуля во второй строке.

Решим пример вторым способом, организуем нули в третьем столбце:

Вторая строка с числом-«мишенью» останется неизменной:

К первой строке прибавим вторую строку, умноженную (мысленно) на –4:


К третьей строке прибавим вторую строку, умноженную (мысленно) на 3 (смотрим и считаем снизу вверх) :

Результат записываем в третью строку, определитель раскрываем по третьему столбцу:

Заметьте, что нет никакой необходимости переставлять строки или столбцы . Элементарные преобразования прекрасно работают как слева направо, так и справа налево. Как сверху вниз, так и снизу вверх.

Задание 4

Вычислить тот же определитель , выбрав в качестве числа-«мишени» элемент . Понизить его порядок двумя способами: получив нули во второй строке и получив нули во втором столбце.

Это пример для самостоятельного решения. Полное решение и краткие комментарии в конце урока.

Иногда в определителе отсутствует единица либо –1, например: . В этом случае «мишень» следует организовать с помощью дополнительного элементарного преобразования. Сделать это можно чаще всего несколькими способами. Например: к первой строке прибавим вторую строку, умноженную –1:

Результат записываем в первую строку:

! Внимание : НЕ НУЖНО из первой строки вычитать вторую строку, это значительно увеличивает вероятность ошибки. Только складываем! Поэтому к первой строке прибавляем вторую строку, умноженную –1. Именно так!

Единица получена, чего и требовалось достичь. Далее можно получить два нуля в первой строке либо в первом столбце. Желающие могут довести решение до конца (верный ответ: –176).

Стоит отметить, что готовая «мишень» чаще всего присутствует в исходном определителе, а уж для определителя 4-го порядка и выше дополнительное преобразование крайне маловероятно.

Порубим на гуляш несколько крупных жаб:

Задача

Решить систему линейных уравнений по формулам Крамера

Ничего страшного, если вы ещё не успели ознакомиться с методом Крамера , в этом случае можно просто посмотреть, как понижается порядок у определителя «четыре на четыре». Да и само правило станет понятно, если чуть-чуть вникнуть в ход решения.

Решение : сначала вычислим главный определитель системы:

Есть возможность пойти стандартным путём, разложив данный определитель по строке либо столбцу. Вспоминая алгоритм первого урока, и, используя придуманную мной матрицу знаков , раскроем определитель, например, по «классической» первой строке:

Не вижу вашего энтузиазма =) Безусловно, можно посидеть минут десять и аккуратно-внимательно родить правильный ответ. Но беда в том, что в дальнейшем предстоит вычислить ещё 4 определителя четвёртого порядка. Поэтому единственный разумный выход – понизить порядок определителя.

Единиц в определителе много, и наша задача выбрать лучший вариант. Вспоминаем золотое правило: в строке (столбце) нулей должно быть побольше, и числа – поменьше. По этой причине вполне подходит вторая строка либо четвёртый столбец. Четвёртый столбец выглядит привлекательнее, причём, там есть две единицы. В качестве «мишени» выбираем элемент :

Первая строка не изменится. И вторая тоже – там уже необходимый ноль:

К третьей строке прибавим первую строку, умноженную на –1 (смотрим и считаем снизу вверх ):

! Внимание ещё раз : Не нужно из третьей строки вычитать первую строку. Только складываем!

Результат записываем в третью строку:

К четвёртой строке прибавим первую строку, умноженную на 3 (смотрим и считаем снизу вверх ):

Результат записываем в четвёртую строку:

(1) Раскрываем определитель по четвёртому столбцу. Не забываем, что к элементу нужно добавить «минус» (см. матрицу знаков).

(2) Порядок определителя понижен до 3-го. В принципе, его можно разложить по строке (столбцу), но лучше отработаем свойства определителя. Вносим минус во вторую строку.

(3) Ко второй строке прибавим первую строку, умноженную на 3. К третьей строке прибавим первую строку, умноженную на 7.

(4) Раскрываем определитель по второму столбцу, тем самым ещё понижая его порядок до двух.

Заметьте, как сократилось решение! Главное, немного «набить руку» на элементарных преобразованиях, и такая возможность представится прямо сейчас. К тому же в вашем распоряжении есть калькулятор, который считает определители (в частности, его можно найти на странице Математические формулы и таблицы ). С помощью калькулятора легко контролировать выполняемые действия. Получили определитель на первом шаге – и сразу проверили, равен ли он исходному определителю.

(1) Раскрываем определитель по третьей строке. Порядок определителя понижен до трёх.

(2) Вносим «минус» в первый столбец.

(3) Ко второй строке прибавим первую строку, умноженную на 3. К третьей строке прибавим первую строку, умноженную на 5.

(4) Раскрываем определитель по второму столбцу, понижая порядок определителя до двух.

Замечательный получается у нас комплексный обед, и пришло время десерта:

Это уже даже не жаба, это сам Годзилла. Возьмём заготовленный стакан апельсинового сока и посмотрим, как понижается порядок определителя. Алгоритм, думаю, понятен: с пятого порядка понижаем до четвёртого, с четвёртого – до третьего и с третьего – до второго:

(1) К первой, третьей, четвертой и пятой строкам прибавим вторую строку.

(2) Раскрываем определитель по 3-му столбцу. Порядок определителя понизился до четырёх.

(3) Из 4-го столбца выносим 2. Первую строку умножаем на –1, и чтобы определитель не изменился, ставим перед ним «минус». Данное преобразование выполнено в целях упростить дальнейшие вычисления.

(4) Ко второй и третьей строкам прибавим первую строку. К четвертой строке прибавим первую строку, умноженную на 3.

(5) Раскрываем определитель по 4-му столбцу. Порядок понижен до трёх.

(6) Раскрываем определитель по 2-му столбцу. Порядок понижен до двух.

(7) Выносим «минус» из 1-го столбца.

Всё вышло проще, чем казалось, у всех монстров есть слабые места!

Неутомимые читатели могут попробовать решить определитель пятого порядка каким-нибудь другим способом, благо, единиц в нём тьма.


К первому столбцу прибавили второй столбец, умноженный на 2. К третьему столбцу прибавили второй столбец. Определитель раскрыли по второй строке.

Понизим порядок определителя, получив нули во втором столбце:

К первой строке прибавили вторую строку, умноженную на –2. К третьей строке прибавили вторую строку, умноженную на 2. Определитель раскрыли по второму столбцу.

Задание 5: Решение :


(1) К первой строке прибавим третью строку, умноженную на 3. Ко второй строке прибавим третью строку, умноженную на 5. К 4-й строке прибавим третью строку, умноженную на 2.
(2) Раскрываем определитель по первому столбцу.
(3) Ко второму столбцу прибавим третий столбец, умноженный на 9. К первому столбцу прибавим третий столбец.
(4) Раскрываем определитель по третьей строке.



(1) К первому столбцу прибавим второй столбец. К третьему столбцу прибавим второй столбец
(2) Раскрываем определитель по третьей строке.
(3) Вносим «минус» в первую строку.
(4) Ко второй строке прибавим первую строку, умноженную на 6. К третьей строке прибавим первую строку
(5) Раскрываем определитель по первому столбцу.