Компьютерология - Информационный ресурс

Школьная энциклопедия. Как сделать магнитострикционный излучатель своими руками: описание, схема и рекомендации Модель с двойной обмоткой

Можно сказать, что ультразвуковые преобразователи родились в воде. В 1826 г. Колладоне и Штурмом на Женевском озере впервые была измерена скорость распространения звука в воде с помощью церковного колокола. Еще до этого эксперимента Леонардо да Винчи отметил, что вода хорошо проводит звук. Однако можно вполне определенно считать, что эксперимент 1826 г. является первым случаем применения для излучения звука в воду резонансного устройства. В дальнейшем подводные колокола, возбуждаемые электромагнитными или пневматическими молоточками, использовались для измерения глубин акустическим методом и для других навигационных целей. По своей форме подводный сигнальный колокол отличался от церковного. Край его был сделан очень толстым, чтобы улучшить резонансные свойства колокола при работе в воде, акустический импеданс которой более чем в 3000 раз превышает акустический импеданс воздуха. В качестве гидрофонов в то время использовались угольные микрофонные капсулы, заключенные в металлический корпус. Для получения повышенной акустической мощности в течение некоторого времени использовались водяные сирены, подвижная часть которых вращалась в водяном баке, прикрепленном к внутренней поверхности корпуса корабля. Но в 1907 г. Появился генератор Фессендена (Рис 2.1), который и был применен для подводной сигнализации.

Рис. 1.

Генератор был создан на основе индукционного (асинхронного) двигателя с использованием электродинамического эффекта. Колебания толстой металлической диафрагмы возбуждались толстой медной трубкой определенной длины, которая могла свободно перемещаться в осевом направлении в сильном постоянном радиальном магнитном поле. Первичная обмотка, по которой протекал переменный ток, была намотана на расположенный внутри сердечник таким образом, что медная трубка представляла собой единственный короткозамкнутый виток вторичной обмотки. Индуцированный в медной трубке вторичный ток, взаимодействуя с постоянным полем, создавал переменную механическую силу. Механическая система генератора была очень массивной, чтобы преодолевать большой акустический импеданс среды. Переменный ток подводился от высокочастотного генератора, и частота выбиралась равной резонансной частоте диафрагмы, соприкасающейся с водой, так как эффективность электроакустического преобразования при возбуждении вне механического резонанса заметно падает. Генераторы Фессендена с резонансными частотами 540, 1050 и 3000 Гц выпускались промышленностью и в течение довольно длительного времени использовались на практике для подводной сигнализации и измерения глубин акустическим методом. Вплоть до тех отдаленных времен ультразвуковые волны совсем не использовались.

Рис. 2.

Но при разумных габаритах излучателя звук слышимых частот распространяется в воде ненаправленно. Кроме того, слышимый звук может очень раздражать пассажиров и команду корабля. С этих точек зрения, а также с учетом определенных военных применений стала ясна необходимость использования ультразвуковых волн. В 1920 г. появился подходящий ультразвуковой излучатель, предназначенный для сигнализации с подводных лодок и названный излучателем Ланжевена (Рис 2.2).

Этот излучатель представляет собой мозаику, набранную из кусков кварца Х-среза и заключенную между двумя толстыми металлическими пластинами. Если к пластинам приложено переменное электрическое напряжение, то в кристаллах кварца возникает пьезоэлектрическая вынуждающая сила, и они вместе с жестко связанными с ними пластинами начинают колебаться как единая механическая система. Частота возбуждающего электрического напряжения выбирается равной частоте основной продольной моды колебаний этой трехслойной структуры. Поверхность металлической пластины, обращенная к воде, совершает поршневые колебания, и направленность излучателя оказывается достаточной при диаметре пластины порядка 30-40 см. Противоположная поверхность другой пластины соприкасается обычно с воздухом, так что она не дает акустического излучения.

В 1933 г. были изобретены магнитострикционные вибраторы из тонких листов металла. Колеблющийся сердечник такого вибратора изготавливается в виде набора сотен склеенных между собой тонких пластин, отштампованных из листового никеля. Электрические обмотки размещаются в предусмотренных при штамповке окнах. Магнитострикционная вынуждающая сила создается переменным током, частота которого выбирается обычно равной частоте механического резонанса сердечника. Толщина отдельной пластины выбирается в соответствии с рабочей частотой с учетом магнитной проницаемости и электрического сопротивления материала так, чтобы потери на вихревые токи не превышали некоторого значения, поскольку они являются главным фактором, определяющим электроакустический коэффициент полезного действия преобразователя. Магнитострикционные преобразователи такого типа могли совершенствоваться за счет разработки новых сплавов, обладающих все большим и большим магнитострикционным эффектом и, следовательно, возможностью преобразования большей мощности. В отличие от этого излучатели Ланжевена, источник возбуждающей силы которых зависит от природы кристаллов кварца, обладали меньшими возможностями совершенствования. Их акустическая мощность ограничивалась напряжением пробоя кристалла. Кроме того, прочная и равномерная приклейка мозаики из кристаллов к большой поверхности металлической пластины, подверженной сильным переменным напряжениям, связана с техническими трудностями. Напротив, в магнитострикционных вибраторах склеиваемые поверхности в точности параллельны направлению колебаний, и поскольку речь идет о переменных механических напряжениях, нет необходимости принимать меры предосторожности для обеспечения прочности склейки. Эти преимущества магнитострикционных вибраторов способствовали быстрому вытеснению ими преобразователей Ланжевена. Далее проводились исследования различных сплавов, и в 1942 г. был получен сплав алюминия с железом, названный альфером, применение которого снизило стоимость магнитострикционных преобразователей. Вибраторы из этого сплава быстро нашли широкое применение не только в ультразвуковых эхолотах, но и в рыболокаторах различных типов. Вскоре, однако, был обнаружен большой пьезоэлектрический эффект в искусственном сегнетоэлектрике, названном керамикой титаната бария, а развитие технологических методов сделало изделия из керамики достаточно механически прочными для использования их в режиме ультразвуковых колебаний. Это произошло за промежуток времени с 1947 по 1950 г. Вынуждающая сила возникает в таком материале при воздействии на него переменного электрического поля, как и в кристалле кварца, но в данном случае нужна еще постоянная электрическая поляризация - электрическое смещение. Коэффициент электромеханической связи для керамики титаната бария значительно выше, чем для кварца, и благодаря этому снова вспомнили об излучателе Ланжевена. В связи с разработкой прочных искусственных смол, таких, как аралдит, ультразвуковые преобразователи типа Ланжевена с керамическими пластинками из титаната бария вместо кварцевой мозаики вновь вошли в практику. Высокий коэффициент электромеханической связи материала и малые диэлектрические потери в нем позволили надеяться на то, что применение таких преобразователей будет способствовать повышению общей эффективности различных ультразвуковых установок.

Рис. 3.

Несмотря на то что упомянутые выше трудности, присущие технике сборки, не были преодолены и для преобразователя Ланжевена из титаната бария, он нашел достаточно широкое практическое применение в различной маломощной ультразвуковой аппаратуре, в частности в компактных рыболокаторах, где выступил серьезным конкурентом магнитострикционных преобразователей из альфера или никеля.

За время с 1954 по 1957 г. были получены новые полезные магнитострикционные материалы - ферриты; в результате промышленной разработки их технологии была достигнута механическая прочность ферритов, достаточная для излучения ультразвука большой мощности. Ввиду того что ферриты имеют очень высокое электрическое сопротивление, потери на вихревые токи не ощущаются для них в любом монолитном объеме материала, и вибратор может быть изготовлен сразу в окончательной форме из ферритового порошка путем прессования и последующего обжига. Электроакустический коэффициент полезного действия ферритов, очевидно, выше, чем КПД металлических магнитострикционных вибраторов, набранных из тонких пластин, и обычно превышает последний примерно в 3 раза, достигая 80-90 %. Характерные преимущества магнитострикционного преобразователя по сравнению с пьезоэлектрическим присущи любому преобразователю из ферритов. Поэтому во многих областях промышленного применения ультразвука в настоящее время используются преимущественно ферритовые преобразователи.

Свойство ультразвуковых волн отражаться от препятствия и возвращаться назад в виде эха используют для определения расстояния до труднодоступных объектов.

Известные в начале ХХ века механические источники ультразвуковых волн - камертоны и колеблющиеся стальные стержни, обладали большой мощностью, но не были способны посылать их узким направленным пучком, подобно световому лучу. Излучаемый ими ультразвук расходился в разные стороны. Из-за этого невозможно было определить направление, в котором находился исследуемый объект.

Но выход нашёл французский учёный Поль Ланжевен. В 1916 г., во время Первой мировой войны, он искал способ обнаружения подводных лодок с помощью ультразвука. И в качестве источника ультразвуковых волн он использовал пьезоэлектрическое явление, которое до этого не находило применения.

Открытие пьезоэлектричества

Нажать на картинку

Пьезоэлектрический эффект был открыт в 1880 г. французскими учёными братьями Пьером и Полем Кюри во время исследования свойств кристаллов. Сжимая кристалл кварца с двух сторон, они обнаружили появление электрических зарядов на гранях, перпендикулярных направлению сжатия. Заряды на одной грани были положительными, а на другой - отрицательными. Такую же картину они наблюдали и при растяжении кристаллов. На той грани, где при сжатии появлялись положительные заряды, при растяжении возникали отрицательные, и наоборот.

Пьер Кюри

Оказалось, что кроме кварца подобными свойствами обладают кристаллы турмалина, сегнетовой соли, сульфата лития, и другие кристаллы, у которых отсутствует центр симметрии. Это явление было названо пьезоэлектричеством, от греческого слова «пьезо» - давлю, а кристаллы, обладающие такими свойствами, - пьезоэлектриками .

При дальнейших исследованиях братья Кюри установили, что существует и обратный пьезоэлектрический эффект . Если создать электрические заряды разной полярности на гранях кристалла, то он сожмётся или растянется.

Вот это открытие и использовал в своих исследованиях Поль Ланжевен.

Пьезоэлектрический излучатель Ланжевена

Поль Ланжевен

Если кварцевую пластинку подвергать механическому воздействию, то она электризуется. И наоборот, если менять с определённой частотой электрическое поле, в котором она находится, то она начнёт колебаться с такой же частотой.

А что будет, если для зарядки кристалла использовать электричество от источника переменного тока высокой частоты? Проделав такой опыт, Ланжевен убедился, что частота колебаний кристалла такая же, что и частота изменения напряжения. Если она ниже 20 000 Гц, кристалл становится источником звука, а если выше, он будет излучать ультразвуковые волны.

Но мощность ультразвука, излучаемого одной пластинкой кристалла, очень мала. Поэтому из кварцевых пластинок учёный создал мозаичный слой и поместил его между двумя стальными накладками, которые выполняли функции электродов. Для увеличения амплитуды колебаний использовалось явление резонанса. Если частота переменного напряжения, подаваемого на пьезокристалл, совпадала с его собственной частотой, то амплитуда его колебаний резко возрастала.

Эту конструкцию назвали «сэндвичем Ланжевена». И она оказалась очень удачной. Мощность излучения была достаточно большой, а пучок волн оказался узко направленным.

Позднее в качестве пьезоэлемента вместо кварцевых пластинок стали применять керамику из титаната бария, пьезоэлектрический эффект которого во много раз выше, чем у кварца.

Пьезоэлектрическая пластинка может быть и приёмником звука. Если звуковая волна встретит её на своём пути, то пластинка начнёт колебаться с частотой источника звука. На её гранях появятся электрические заряды. Энергия звуковых колебаний преобразуется в энергию электрических колебаний, которые улавливаются приёмником.

Для генерации ультразвука применяются специальные излучатели магнитострикционного типа. К основным параметрам устройств относится сопротивление и проводимость. Также учитывается допустимая величина частоты. По конструкции устройства могут отличаться. Также надо отметить, что модели активно применяются в эхолотах. Чтобы разобраться в излучателях, важно рассмотреть их схему.

Схема устройства

Стандартный магнитострикционный излучатель ультразвука состоит из подставки и набора клемм. Непосредственно магнит подводится на конденсатор. В верхней части устройства имеется обмотка. У основания излучателей часто устанавливается зажимное кольцо. Магнит подходит только неодимового типа. В верхней части моделей располагается стержень. Для его фиксации применяется кольцо.

Кольцевая модификация

Кольцевые устройства работают при проводимости от 4 мк. Многие модели производятся с короткими подставками. Также надо отметить, что существуют модификации на полевых конденсаторах. Чтобы собрать магнитострикционный излучатель своими руками, применяется обмотка соленоида. При этом клеммы важно устанавливать низкого порогового напряжения. Ферритовый стрежень целесообразнее подбирать небольшого диаметра. Зажимное кольцо ставится в последнюю очередь.

Устройство с яром

Сделать магнитострикционный излучатель своими руками довольно просто. В первую очередь заготавливается стойка под стержень. Далее важно вырезать подставку. Для этого можно использовать металлический диск. Специалисты говорят о том, что подставка в диаметре должна быть не более 3.5 см. Клеммы для устройства подбираются на 20 В. В верхней части модели фиксируется кольцо. При необходимости можно намотать изоленту. Показатель сопротивления у излучателей данного типа находится в районе 30 Ом. Работают они при проводимости не менее 5 мк. Обмотка в данном случае не потребуется.

Модель с двойной обмоткой

Устройства с двойной обмоткой производятся разного диаметра. Проводимость у моделей находится на отметке 4 мк. Большинство устройств обладает высоким волновым сопротивлением. Чтобы сделать магнитострикционный излучатель своими руками, используется только стальная подставка. Изолятор в данном случае не потребуется. Ферритовый стержень разрешается устанавливать на подкладку. Специалисты рекомендуют заранее заготовить уплотнительное кольцо. Также надо отметить, что для сборки излучателя потребуется конденсатор полевого типа. Сопротивление на входе у модели должно составлять не более 20 Ом. Обмотки устанавливаются рядом со стержнем.

Излучатели на базе отражателя

Излучатели данного типа выделяются высокой проводимостью. Работают модели при напряжении 35 В. Многие устройства оснащаются полевыми конденсаторами. Сделать магнитострикционный излучатель своими руками довольно проблематично. В первую очередь надо подобрать стержень небольшого диаметра. При этом клеммы заготавливаются с проводимостью от 4 мк.

Волновое сопротивление в устройстве должно составлять от 45 Ом. Пластина устанавливается на подставке. Обмотка в данном случае не должна соприкасаться с клеммами. В нижней части устройства обязана находиться круглая подставка. Для фиксации кольца часто применяется обычная изолента. Конденсатор напаивается над манганитом. Также надо отметить, что кольца иногда применяются с накладками.

Устройства для эхолотов

Для эхолотов часто используется магнитострикционный излучатель УЗ. Как приготовить модель своими руками? Самодельные модификации производятся с проводимостью от 5 мк. у них в среднем равняется 55 Ом. Чтобы изготовить мощный ультразвуковой стержень применяется на 1.5 см. Обмотка соленоида накручивается с малым шагом.

Специалисты говорят о том, что стойки под излучатели целесообразнее подбирать из нержавейки. При этом клеммы применяются с малой проводимостью. Конденсаторы подходят разного типа. у излучателей находится на отметке 14 Вт. Для фиксации стержня используются резиновые кольца. У основания устройства накручивается изолента. Также стоит отметить, что магнит надо устанавливать в последнюю очередь.

Модификации для рыболокаторов

Устройства для рыболокаторов собираются только с проводными конденсаторами. Для начала требуется установить стойку. Целесообразнее применять кольца диаметром от 4.5 см. Обмотка соленоида обязана плотно прилегать к стержню. Довольно часто конденсаторы припаиваются у основания излучателей. Некоторые модификации производятся на две клеммы. Ферритовый стрежень обязан фиксироваться на изоляторе. Для укрепления кольца используется изолента.

Модели низкого волнового сопротивления

Устройства низкого волнового сопротивления работают при напряжении 12 В. У многих моделей имеются два конденсатора. Чтобы собрать прибор, генерирующий ультразвук, своими руками, потребуется стержень на 10 см. При этом конденсаторы на излучатель устанавливаются проводного типа. Обмотка накручивается в последнюю очередь. Также надо отметить, что для сборки модификации потребуется клемма. В некоторых случаях используются полевые конденсаторы на 4 мк. Параметр частоты будет довольно высокий. Магнит целесообразнее устанавливаться над клеммой.

Устройства высокого волнового сопротивления

Излучатели ультразвука высокого сопротивления хорошо подходят для приемников короткой волны. Собрать самостоятельно устройство можно только на базе переходных конденсаторов. При этом клеммы побираются высокой проводимости. Довольно часто магнит устанавливается на стойке.

Подставка для излучателя применяется малой высоты. Также надо отметить, что для сборки устройства используются один стрежень. Для изоляции его основания подойдет обычная изолента. В верней части излучателя обязано находиться кольцо.

Стержневые устройства

Схема стержневого типа включает в себя проводник с обмоткой. Конденсаторы разрешается применять разной емкости. При этом они могут отличаться по проводимости. Если рассматривать простую модель, то подставка заготавливается круглой формы, а клеммы устанавливаются на 10 В. Обмотка соленоида накручивается в последнюю очередь. Также надо отметить, что магнит подбирается неодимового типа.

Непосредственно стержень применяется на 2.2 см. Клеммы можно устанавливать на подкладке. Также надо упомянуть о том, что существуют модификации на 12 В. Если рассматривать устройства с полевыми конденсаторами высокой емкости, то минимальный диаметр стержня допускается 2.5 см. При этом обмотка должна накручиваться до изоляции. В верхней части излучателя устанавливается защитное кольцо. Подставки разрешается делать без накладки.

Модели с однопереходными конденсаторами

Излучатели данного типа выдают проводимость на уровне 5 мк. При этом показатель волнового сопротивления у них максимум доходит до 45 Ом. Для того чтобы самостоятельно изготовить излучатель, заготавливается небольшая стойка. В верхней части подставки обязана находиться накладка из резины. Также надо отметить, что магнит заготавливается неодимового типа.

Специалисты советуют устанавливать его на клей. Клеммы для устройства подбираются на 20 Вт. Непосредственно конденсатор устанавливается над накладкой. Стержень используется диаметром в 3.3 см. В нижней части обмотки должно находиться кольцо. Если рассматривать модели на два конденсатора, то стержень разрешается использовать с диаметром 3.5 см. Обмотка должна накручиваться до самого основания излучателя. В нижней части стоки клеится изолента. Магнит устанавливается в середине стойки. Клеммы при этом должны находиться по сторонам.

Изобретение относится к ультразвуковой технике, а именно к конструкциям ультразвуковых колебательных систем, и может быть использована при разработке ультразвуковой медицинской аппаратуры. Техническим результатом изобретения является увеличение амплитуды колебаний, повышение надежности работы, уменьшение габаритных размеров и массы. Ультразвуковая колебательная система выполнена в форме тела вращения и образована последовательно расположенными двумя металлическими накладками, отражающей и концентрирующей, и двумя пьезоэлектрическими элементами, расположенными между накладками, акустически связанными между собой стяжным элементом. Пьезоэлементы выполнены дисковыми, отражающая накладка состоит из последовательно расположенных резьбового упора с центральным отверстием и дисковой накладки. Концентрирующая накладка содержит три участка: первый - цилиндрический с фланцем, второй - экспоненциальный и третий - выходной цилиндрический с резьбовым глухим отверстием для крепления волновода-инструмента, а стяжной элемент выполнен в виде стакана с внутренней резьбой и двумя отверстиями: круглым в центре днища и прямоугольным на боковой поверхности стакана. Первый цилиндрический участок концентрирующей накладки выполнен резьбовым до фланца, на этом участке дополнительно размещена накидная гайка. 2 ил.

Рисунки к патенту РФ 2465071

Изобретение относится к области ультразвуковой техники и служит для получения и передачи механических колебаний дозвуковой, звуковой или сверхзвуковой частоты и может быть использовано в любых технологических процессах, идущих с применением ультразвука.

Известны ультразвуковые колебательные системы (пьезокерамические преобразователи) типа Ланжевена [Е.Кикучи. Ультразвуковые преобразователи. М.: Издательство «Мир», 1972, с.472.; Патент ФРГ № 2711306 МКИ В06В 3/00]. Этот тип преобразователей представляет собой мозаику, набранную из кусков кварца -среза и заключенную между двумя металлическими пластинами. Недостатками пьезокерамических преобразователей данного типа являются: нетехнологичность конструкции, сложность сборки и малая мощность.

Известны также ультразвуковые колебательные системы (излучатели) типа «сэндвич» [С.С.Волков, Б.Я.Черняк. Сварка пластмасс ультразвуком. М.: Химия, 1986, с.126.; Новиков А.А., Негров Д.А., Шустер Я.Б. К вопросу определения усилия стяжки пьезокерамических преобразователей продольного типа. Материалы III Международного научно-технологического конгресса «Военная техника, вооружение и технологии двойного применения». - Омск. - 2005. - Ч.1. - С.177-178; Свидетельство на полезную модель RU № 18655. Ультразвуковой керамический излучатель. / Новиков А.А., Шустер Я.Б., Негров Д.А. Опубл. БИ № 19, 2001], одна из которых и выбрана в качестве прототипа [RU 2141386 «Ультразвуковая колебательная система» Барсуков Р.В. и др.], как наиболее близкая по технической сущности к предлагаемой. Она представляет собой колебательную систему в форме тела вращения, образованную последовательно расположенными и акустически связанными между собой двумя металлическими накладками и двумя пьезоэлектрическими элементами, расположенными между накладками, причем образующая тела вращения колебательной системы выполнена в виде непрерывной кусочногладкой кривой, а тело вращения состоит из трех участков: первый цилиндрический, второй участок с экспоненциальным или плавным радиусным изменением диаметра сечения, и третий - цилиндрический, при этом кольцевые пьезоэлектрические элементы расположены между экспоненциальным и первым цилиндрическим участком, которые соединены стяжным элементом (например, болтом или шпилькой).

Излучатели типа «сэндвич» свободны от недостатков излучателей типа Ланжевена, описанных выше. Они просты в изготовлении и сборке, однако при малых диаметрах используемых пьезоколец диаметр внутреннего отверстия в пьезокольце становится величиной, ограничивающей энергетические параметры колебательной системы, поскольку с одной стороны уменьшает активную поверхность пьезоэлемента, а с другой - приводит к необходимости такого уменьшения диаметра стяжной шпильки или болта, при котором прочностные характеристики стяжного элемента не обеспечивают надежной работы колебательной системы в целом.

Техническим результатом изобретения является увеличение амплитуды колебаний при одновременном повышении надежности работы и значительном уменьшении габаритных размеров и массы ультразвуковой колебательной системы.

Технический результат достигается тем, что в известном устройстве, представляющем собой ультразвуковую колебательную систему в форме тела вращения, образованную последовательно расположенными двумя металлическими накладками, отражающей и концентрирующей, и двумя пьезоэлектрическими элементами, расположенными между накладками, акустически связанными между собой стяжным элементом, согласно заявляемому изобретению, пьезоэлементы выполнены дисковыми, отражающая накладка состоит из последовательно расположенных резьбового упора с центральным отверстием и дисковой накладки, концентрирующая накладка содержит три участка: первый - цилиндрический с фланцем, второй - экспоненциальный и третий - выходной цилиндрический с резьбовым глухим отверстием для крепления волновода-инструмента, а стяжной элемент выполнен в виде стакана с внутренней резьбой и двумя отверстиями: круглым в центре днища и прямоугольным на боковой поверхности стакана, причем первый цилиндрический участок концентрирующей накладки выполнен резьбовым до фланца и на этом участке дополнительно размещена накидная гайка.

Сборочный чертеж предложенного устройства приведен на рис.1 и содержит следующие элементы: концентрирующую накладку 1, вставленную в круглое отверстие стакана 2 так, чтобы ее положение фиксировалось фланцем накладки; пьезоэлементы 3 с контактными лепестками 4, выступающими через прямоугольное отверстие 5 стакана 2, зафиксированные в стакане 2 с помощью дисковой накладки 6 и фторопластовой ленты в виде разрезанного кольца 7 и резьбового упора 8. Накидная гайка 9 расположена на цилиндрическом фланцевом участке концентрирующей накладки 1.

Предложенное устройство работает следующим образом.

При подаче высокочастотного напряжения на выводы контактных лепестков 4, выступающих через прямоугольное отверстие 5 боковой поверхности стакана 2, пьезокерамические диски 3 осуществляют преобразование электрического сигнала в акустический сигнал.

При работе акустической колебательной системы [Новиков А.А., Шустер Я.Б., Негров ДА. Особенности проектирования ультразвукового пьезокерамического преобразователя полуволновой длины. Омский научный вестник. - 2009. Сер.: Приборы, машины и технологии. - № 3 (83). - С.194-198.], распределение амплитуд продольных акустических колебаний по длине данной акустической системы будет выглядеть, как показано на рис.2. При этом «нулевые» колебания будут приходиться на область цилиндрического фланцевого участка концентрирующей накладки 1, поэтому расположение на этом участке накидной гайки 9 позволит использовать ее для жесткого крепления всей колебательной системы в корпусе излучателя при минимальном воздействии элементов крепления на характеристики акустической системы. С другой стороны, использование в качестве стяжного элемента стакана 2, переводит конструкцию ультразвуковой акустической системы из системы с внутренней стяжкой (наиболее широко распространенной в настоящее время как у нас в стране, так и за рубежом ), в конструкцию систем с внешней стяжкой. Это, во-первых, обеспечивает возможность использования в качестве пьезоактивных элементов не кольца, а диски, что при тех же диаметрах акустической системы позволяет увеличить выходную акустическую мощность, причем тем существеннее, чем меньше диаметр используемых пьезоэлементов, а во-вторых, избавляет от проблемы обеспечения необходимой прочности и надежности работы внутреннего стяжного элемента.

Прямоугольное отверстие 5 на боковой поверхности стакана 2 используется для вывода через него контактных лепестков 4, а отверстие в резьбовом упоре 7 обеспечивает не только возможность стяжки пьезодисков без их проворота, но и возможность некоторой коррекции частотных характеристик колебательной системы.

Таким образом, предлагаемая ультразвуковая акустическая система позволяет:

Получить эффективные малогабаритные ультразвуковые излучатели при использовании пьезоэлементов (дисков) малых диаметров;

Достичь минимального влияния элементов крепления акустической системы в корпусе ультразвукового излучателя;

Увеличить амплитуду колебаний системы при одновременном повышении надежности работы при значительном уменьшении габаритных размеров и массы, что крайне необходимо для современного ультразвукового медицинского оборудования.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Ультразвуковая колебательная система в форме тела вращения, образованная последовательно расположенными двумя металлическими накладками, отражающей и концентрирующей, и двумя пьезоэлектрическими элементами, расположенными между накладками, акустически связанными между собой стяжным элементом, отличающаяся тем, что пьезоэлементы выполнены дисковыми, отражающая накладка состоит из последовательно расположенных резьбового упора с центральным отверстием и дисковой накладки, концентрирующая накладка содержит три участка: первый - цилиндрический с фланцем, второй - экспоненциальный и третий - выходной цилиндрический с резьбовым глухим отверстием для крепления волновода-инструмента, а стяжной элемент выполнен в виде стакана с внутренней резьбой и двумя отверстиями: круглым в центре днища и прямоугольным на боковой поверхности стакана, причем первый цилиндрический участок концентрирующей накладки выполнен резьбовым до фланца и на этом участке дополнительно размещена накидная гайка.